
, . .

A Software Architecture for Autonomous Spacecraft

by

Jimmy S. Shih

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 1, 1997

Copyright 1997 Jimmy S. Shih. All rights reserved.

The author hereby grants to M.1 .T. permission to reproduce

distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

A u t h o r _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ – _ – — – _ — – _ _ _ _ _ _ _ – – – _

Department of Electrical Engineering and Computer Science

May 1, 1997

C e r t i f i e d b y _ _ _ _ _ — — — — — — — — — _ — – _ _ – –

Patrick H. Winston

Thesis Supervisor

C e r t i f i e d b y _ _ _ _ _ _ _ _ _ _ _ _ — — _ _ _ _ _ _ _ _ _

Arvind

Thesis Supervisor

A c c e p t e d b y _ _ _ _ _ _ _ _ _ — _ — — — _ __ — — — — . .

F. R. Morgenthaler

Chairman, Department Committee on Graduate Theses

. .

A Software Architecture for Autonomous Spacecraft

by

Jimmy S. Shih

Submitted to the

Department of Electrical Engineering and Computer Science

May 1, 1997

In Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

The thesis objective is to design an autonomous spacecraft architecture to perform both

deliberative and reactive behaviors. The Autonomous Small Planet In-situ Reaction to

Events (ASPIRE) project uses the architecture to integrate several autonomous technologies

for a comet orbiter mission. The architecture uses the deliberative path for performing

deliberative behaviors and uses the three by-pass paths for performing reactive behaviors.

The deliberative path subsumes the three by-pass paths when it has time to handle events.

The three by-pass paths are used to provide faster response time. The ASPIRE project

demonstrates that the deliberative path can handle all the deliberative behaviors required by

the mission. The three by-pass paths are not implemented in the project. Finally, the thesis

mentions several good architecture and implementation features.

Thesis Supervisor: Patrick H. Winston

Title: Professor, Director AI Lab

Thesis Supervisor: Arvind

Title: Charles W & Jennifer C Johnson Professor

Table of Content

LIST OF FIGURES 5

PREFACE AND ACKNOWLEDGMENTS

LIST OF ABBREVIATIONS

1 ASPIRE PROJECT

1.1 Thesis Objective

1.2 ASPIRE Project Goal

1.3 Mission Scenario

1.4 Road Map

2 BACKGROUND LITERATURE

2.1 Autonomous Robot Architectures

2.2 Autonomous Spacecraft Architectures

3 ASPIRE ARCHITECTURE FRAMEWORK

3.1 Spacecraft Requirements

3.2 Design Philosophy

3.3 Architecture Framework

3.4 Evaluation

3.5 Issues

3.6 Future Work

6

7

8

8

8

9

10

11

11

17

2 0

2 0

2 0

2 1

2 3

2 4

2 4

. .

4 ASPIRE IMPLEMENTATION

4.1

4.2

4.3

4.4

4.5

Overview

Modules Description

Evaluation

Issues

Future Work

5 CONCLUSION

2 5

2 5

2 6

3 0

31

3 2

3 3

REFERENCES

4

. .

.
. . List of Figures

FIGURE 1 COMET NUCLEUS (CREATED BY WILLIAM LINCOLN 1996).

FIGURE 2 FOUR DISTINCT AUTONOMOUS ROBOT ARCHITECIVRES .

FIGURE 3 JAMES ALBUS’S ARCHITECTURE (1991).

FIGURE 4 REID SIMMONS’S ARCHITECTURE (SIMMONS ET AL. 1995).

FIGURE 5 JAMES FIRBY’S ARCHITECHJRE (1994).

FIGURE 6 RODNEY BROOK’S ARCHITECTURE (1985).

FIGURE 7 ASSAP ARCHITECTURE.

FIGURE 8 DS 1 ARCHITECTURE (PELL ET AL. 1996).

FIGURE 9 ASPIRE ARCHITECTURE FRAMEWORK.

FIGURE 10 ASPIRE IMPLEMENTATION.

FIGURE 11 STATE TRANSITION DIAGRAM.

9

11

12

13

15

16

17

18

21

25

29

,

Preface and Acknowledgments

I started my research in software architecture for autonomous spacecraft when I

worked on the Autonomous Serendipitous Science Acquisition for Planets (AS SAP) project

at the Jet Propulsion Laboratory (JPL) during the summer of 1995. The goal of the ASSAP

project was to integrate autonomous technologies for missions to map large planets. I came

back to JPL the following year to work on the Autonomous Small Planet In-situ Reaction to

Events (ASPIRE) project, the follow-up project to ASSAP. The goal of the ASPIRE project

was to integrate autonomous technologies for missions to orbit comets. My thesis was based

on the software architecture I designed for the ASPIRE project.

I want to thank Abdullah Aljabri, the task lead for the AS SAP project, for getting me

started in research on autonomous spacecraft architecture. I want to thank Tooraj Kia, the

task lead for the ASPIRE project, for giving me the chance to design the ASPIRE

architecture. I want to thank members of the AS SAP and ASPIRE teams for their valuable

advice. Finally, I want to thank my advisors, Professor Patrick Winston and Professor Arvind,

for supervising my thesis.

List of Abbreviations

AFAST

ASPIRE

ASSAP

DS 1

JPL

MIR

RAPS

TCA

Autonomous Feature and Star Tracker

Autonomous Small Planet In-situ Reaction to Events

Autonomous Serendipitous Science Acquisition for Planets

Deep Space 1

Jet Propulsion Laboratory

Mode Identification and Recovery

Reactive Action Packages

Task Control Architecture

7

.

1 ASPIRE Project

1.1 Thesis Objective

The thesis objective is to design a spacecraft software architecture that can handle

both deliberative and reactive behaviors, Autonomous spacecraft can use deliberative

behaviors to achieve mission objectives and use reactive behaviors to deal with unexpected

events. The hope is that the software architecture will be used as the framework to control

future spacecraft.

Autonomous spacecraft can further our ability to explore space by reducing

spacecraft operation cost and improving spacecraft response time. Autonomous spacecraft

can reduce operation cost by automating deliberative behaviors onboard the spacecraft.

Current spacecraft require many people and heavy usage of the Deep Space Network

antennas to command them from the ground. Similarly, autonomous. spacecraft can

improve response time by conducting reactive behaviors onboard the spacecraft. Current

spacecraft require telemetry linkup and long response time to command them from the

ground. By reducing operation cost and improving response time, we can maintain more

spacecraft and capture more scientific events.

1.2 ASPIRE Project Goal

The Autonomous Small Planets In-situ Reaction to Events (ASPIRE) project goal is

to integrate new technology modules, such as the science, tracking, planner, and navigation,

to support the quick reaction mode of a comet orbiter mission. In the quick reaction mode,

the science module detects and identifies interesting science targets. The tracking module

detects and tracks ejected cometary fragments. The planner module generates plans for the

spacecraft in response to the science generated targets. Finally, the navigation module

produces plans to perform close flyby maneuvers around the comet. The ASPIRE project

demonstrates in-situ science gathering triggered by several unpredictable environmental

changes at the comet.

The ASPIRE project demonstrates several new autonomous spacecraft concepts.

First, the project demonstrates that the ASPIRE architecture framework can be used to

integrate all the autonomy technologies. Second, it demonstrates that the science module’s

change detection algorithm can detect sub-pixel level changes on the comet (Crippen

1992). Third, it demonstrates that the tracking module’s Autonomous Feature and Star

Tracker (AFAST) algorithm can detect and track ejected cometary fragments (Chu et al.

1994). Fourth, it demonstrates that the navigation module’s close proximity algorithm can

. .

perform close flyby maneuvers around the comet (Scheeres 1996). These are all essential

technologies for spacecraft that want to orbit around the comet.

1.3 Mission Scenario

Figure 1 Comet Nucleus (created by William Lincoln 1996).

The ASPIRE project uses a comet model and a spacecraft model to simulate the

environment for the mission. The comet model, shown in figure 1, is 4 kilometers wide in

diameter. We think a comet is made up of many loosely held cometary fragments that are

remnants of the early solar system building blocks. Three types of events can happen on the

comet, cracks, ejected fragments, and comet-splitting. Cracks happen when two cometary

9

*

. . fragments move against each other on the comet. Ejected fragments happen when cometary

fragments are ejected from the comet. Comet-splitting happens when the comet breaks apart

into several large pieces. The spacecraft model contains two cameras to observe the comet.

The wide-field camera always points at the comet center. The narrow-field camera can be

controlled to take fine resolution pictures and track ejected fragments. The comet model

and the spacecraft model are used to demonstrate the onboard autonomy software.

The mission is to a near inactive comet. The spacecraft uses the wide-field camera to

take pictures of the comet upon arrival. These pictures are processed on-board the

spacecraft to construct the internal comet-model. After the spacecraft has generated the

internal comet-model, it enters the quick reaction mode. The spacecraft initially enters an

orbit, 20 kilometers from the comet, to take wide-field images. The science module receives

these wide-field images and compares them with images taken in the past to detect sub-pixel

level and pixel level changes like cracks and ejected fragments. The Science module

informs the Planner module when it discovers interesting targets on the comet surface. The

Planner will then direct the tracking module to use the narrow-field camera to track them.

The Plainer module also decides which targets on the comet surface to perform close flyby

maneuvers over. A close flyby maneuver can place the spacecraft within 500 meters of the

comet. After a close flyby maneuver, the spacecraft returns to an orbit around the comet to

take more pictures and wait for the next close flyby command. When unexpected events

happen, like comet-splitting, the spacecraft S1OW1 y maneuvers away to a safe distance of 100

kilometers from the comet to observe the events. The mission scenario tests all the

autonomy algorithms by injecting various changes to the comet model at various times.

1.4 Road Map

This thesis is organized into five chapters and one appendix. Chapter one describes

the ASPIRE project. Chapter two provides background literature on autonomous robot and

autonomous spacecraft architectures. Chapter three describes the ASPIRE architecture

framework. Chapter four describes the ASPIRE architecture implementation. Finally,

Chapter five concludes with some recommendations. The appendix provides further

description of the ASPIRE architecture implementation.

10

. .
2 Background Literature

2.1 Autonomous Robot Architectures

Autonomous robots and autonomous spacecraft are similar in many respects. Both

need to perform complex tasks in uncertain environment with limited sensors, actuators, and

power. Furthermore, both need to degrade gracefully when faults occur. Therefore, many

good ideas use in designing architectures for autonomous robots can be used in designing

architectures for autonomous spacecraft.

However, autonomous robots are different from autonomous spacecraft in four

areas. First, autonomous robots are more self-sufficient than autonomous spacecraft.

Autonomous robots are designed to perform tasks without additional support once they are

placed in the environment. Autonomous spacecraft, on the other hand, are designed mainly

to reduce ground control. Second, autonomous robots are less capable of interpreting

sensor data than autonomous spacecraft (Pen et al. 1996). A zero reading from a robot’s

ground sensor can mean that the robot is approaching a hole, a slope, or a cliff. But, a

measurement from a spacecraft’s Inertial Reference Unit can determine spacecraft’s exact

attitude. Third, autonomous robots are better at handling faults than autonomous spacecraft

(Pen et al. 1996). Autonomous robots can react to a fault by trying different actions without

knowing the cause of the fault. Autonomous spacecraft, on the other hand, must view each

fault as a failure and act according to the context and result of the fault. Fourth,

autonomous robots are more prone to suffer transient failures than autonomous spacecraft

(Pen et al. 1996). Failures occurring in autonomous robots are more likely to be temporary.

In contrast, failures occurring in autonomous spacecraft are more likely to be permanent.

Even though autonomous robots and autonomous spacecraft are similar in many areas, they

do have several subtle differences.

James Albus Reid Simmons James Firby Rodney Brooks

Deliberate ve+ ➤ Reactive

Figure 2 Four Distinct Autonomous Robot Architectures.

Four people, James Albus, Reid Simmons, James Firby, and Rodney Brooks, have

proposed four distinct architectures for controlling autonomous robots. Their architectures,

shown in figure 2, differ in their emphases on performing deliberative and reactive

behaviors. James Albus’s architecture emphasizes on performing deliberative behaviors.

11

Reid Simmons’s architecture emphasizes on performing deliberative behaviors, but contains

mechanisms for performing reactive behaviors. In contrast, James Firby ’s architecture

emphasizes on performing reactive behaviors, but contains mechanisms for performing

deliberative behaviors. Finally, Rodney Brooks’s architecture emphasizes solely on

performing reactive behaviors. These four architectures provide four distinct philosophies

for controlling autonomous robots.

2.1.1 James Albusk Architecture

l \ / \ K PROCESSING)~/ WORD 1 -(G E N E R A T I O N ;. /-

t it~ .~

uMODEL -\

SENSORS ACTUATOR

ENVIRONMEIW

Figure 3 James Albus’s Architecture (1991).

James Albus proposes an architecture for autonomous robots that emphasizes on

performing deliberative behaviors. The architecture, shown in the left side of figure 3, is a

hierarchy. From one hierarchy level down to the next lower hierarchy level, the time

duration of interests for perception resolution, world modeling, goal planning, and control

bandwidth decreases by an order of magnitude. For examples, the highest level only deals

with monthly events. The next lower level only deals with daily events. And the next lower

level only deals with hourly events and so forth. The architecture, shown in the right side of

figure 3, uses six basic modules, Sensors, Sensory-Processing, World-Model, Value-

Judgment, Behavior-Generation, and Actuators, to perform deliberative behaviors at each

hierarchy level. The Sensor-Processing module receives inputs about the Environment from

12

., the Sensors module. Information from the Sensor-Processing module are then stored in the

World-Model module. The Value-Judgment module uses information in the World-Model

module to issue appropriate high level commands. The Behavior-Generation module then

decomposes high level commands from the Value-Judgment module into low level

commands and executes them on the Environment using the Actuators module. The

architecture only needs to perform deliberative behaviors because lower and lower levels of

the hierarchy provide faster and faster response time to handle unexpected events (Albus

1991).

James Albus’s reason for designing an architecture that emphasizes on performing

deliberative behaviors is because he believes that deliberative behaviors can bring about

learning better than reactive behaviors can. An architecture that emphasizes on deliberative

behaviors can propagate new knowledge globally to all other modules through the World-

Model module. But an architecture that emphasizes on reactive behaviors can only

propagate new knowledge locally to neighboring modules. He believes that an architecture

must have explicit knowledge representation and functionality to allow behaviors to become

adaptive and creative (Albus 1991).

2.1.2 Reid Simmons’s Architecture

Handling
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

~ - - - - - - - - - - - - - - - - - - - - - - - - - -
I1

Achievement

I------- --- ;
nv

Figure 4 Reid Simmons’s Architecture (Simmons et al. 1995).

13

. . Reid Simmons proposes an

emphasizes on performing deliberative

reactive behaviors. His architecture,

Architecture (TCA). TCA performs

architecture to control autonomous robots that

behaviors, but contains mechanisms for performing

shown in figure 4, is called the Task Control

deliberative behaviors by representing high level

commands, like commands A, B, and C in figure 4, as task trees. Each TCA task tree is

decomposed by that task’s functionalist y. For example, the root node of the task tree

corresponds to the high level command. Children of the root node correspond to sub-tasks

of the high level command. And task trees leaves correspond to low level commands for

achieving the task. Different constraints, like SEQUENTIAL ACHIEVEMENT, can be

placed between task tree nodes to achieve desire behavior between task handling, planning,

and achievement. TCA contains two mechanisms, monitors and exception handlers, for

performing reactive behaviors. During task tree execution, TCA can use monitors to detect

unexpected events and use exception handlers to deal with them. TCA uses task-oriented

approach to control robots. (Simmons 1994).

Reid Simmons’s reason for designing an architecture that emphasizes on

performing deliberative behaviors is because the “control of planning, perceptions, and

action must be well-structured for general-purpose robots to succeed in rich and uncertain

environment” (1994). TCA provides “mechanisms that can map directly from design

decisions to methods of communication, task coordination, and reactivity” (Simmons

1994).

14

. .

2.1.3 James Firby’s Architecture

%

Planner

Actiw Sensing Behavior Control
Processes Processes

Figure 5 James Firby’s Architecture (1994).

James Firby proposes an architecture for autonomous robots that emphasizes on

performing reactive behaviors, but contains mechanisms for performing deliberative

behaviors. The architecture, shown in figure 5, uses three layers to perform deliberative

behaviors. The top layer, the Planner, provides sketchy plans for carrying out deliberative

behaviors. The middle layer, the Reactive Action Packages (RAPs) Executor, takes sketchy

plans and executes them using the Active-Sensing and Behavior-Control Processes. The

bottom layer, the Active Sensing and Behavior-Control Prwesses, interfaces with the actual

sensors and actuators. The key layer is the RAPs Executor, it performs reactive behaviors by

muddling through sketchy plans and trying different methods to achieve a task. A sketchy

plan consists of several tasks. Each task has several methods for achieving its objective. All

unsatisfied tasks are placed in a queue. The R4Ps Executor continuously executes the first

task in the queue using one of that task’s methods. After each execution, the RAPs Executor

re-prioritizes tasks in the queue based on the current situation. The RAPs Executor can react

to unexpected events by inserting high priority tasks into the queue so that they will be

15

executed next. The R4Ps Executor allows fast reaction without deliberation to achieve

highly reactive behaviors (Firby 1989).

James Firby’s reason for designing an architecture that emphasizes on performing

reactive behaviors is because the Planner can only provide sketchy plans during planning.

Details of the plans can only be fill in during execution time by reacting to the current

situation (Firby 1989).

2.1.4 Rodney Brooks’s Architecture

I I

I I
I I
I I
I I
I I
I I
I I

b Level 3 1

P Level 2

t
b Level 1 w

Sensors Level O w) Actuators

Figure 6 Rodney Brook’s Architecture (1985).

Rodney Brooks proposes an architecture to control autonomous robots that

emphasizes solely on performing reactive behaviors. His architecture, shown in figure 6, is

called the Subsumption architecture. The Subsumption architecture decomposes the control

problem by behaviors rather than by functional units and organizes behaviors into several

levels. The architecture has no centralized control, each behavior reacts on its own to the

environment. But higher level behaviors can subsume lower level behaviors by blocking

lower level beha;iors’ outputs. The architecture uses bottom-up approach to build lower

level behaviors first before building higher level behaviors (Brooks 1985).

Rodney Brooks’s reason for designing an architecture that emphasizes on reactive

behaviors is because of robustness. Lower level behaviors of the Subsumption architecture

can still function even if higher level behaviors fail. Organizing control by behaviors greatly

16

increases a robot’s robustness. The Subsumption

concurrency, and real-time control” (Ferrell 1993).

2.2 Autonomous Spacecraft Architectures

architecture also “stresses reactivity,

The Jet Propulsion Laboratory (JPL) has been

autonomous spacecraft. Two recent JPL projects, the

working on several projects

Autonomous Serendipitous

to build

Science

Acquisition for Planets (ASSAP) and the Deep Space 1 (DS 1) projects, have made

significant contribution in autonomous spacecraft architectures.

2.2.1 ASSAP Architecture

The ASSAP project goal is to demonstrate and integrate new spacecraft technologies

for planet mapping missions. The ASSAP project uses the science module to detect surface

features and commands the navigation module to take more pictures them. During the

mission, the project demonstrates onboard navigation maneuvers like momentum dumping

and drag-makeup maneuvers. The project also proposes several fault protection strategies

for autonomous spacecraft. The ASSAP project demonstrates key autonomous spacecraft

concepts like “autonomous task planning, sequencing, execution, and recovery from

failures” (Aljabri et al. 1996).

&
Execute

Task Trees

Figure 7 ASSAP Architecture.

17

The AS SAP architecture uses Reid Simmons’s TCA to control spacecraft. The

architecture consists of five stages, shown in figure 7 (Shih 1995). First, it accepts high level

commands from a Planner. Second, it generates TCA task trees to accomplish these

commands. Third, it simulates these TCA task trees to validate them. Fourth, it schedules

TCA task trees based on their resource requirements. Finally, it uses TCA task management

to execute task trees. The ASSAP project shows that TCA is very useful for controlling

autonomous spacecraft.

2.2.2 DS1 Architecture

The state-of-the-art software architecture for autonomous spacecraft is the DS 1

architecture. The DS 1 spacecraft is scheduled to be launched in 1998 to validate oqboard

autonomous control of spacecraft. The architecture, designed by Pen et al,, can support six

activities that are usually done on the ground. They are “planning activities, sequencing

spacecraft actions, tracking spacecraft state, ensuring correct functioning, recovering in cases

of failures, and reconfiguring hardware”. Their architecture “integrates traditional real-

time monitoring and control with constraint-based planning and scheduling, robust multi-

threaded execution, and model-based diagnosis and reconfiguration” (Pen et al. 1996).

Planning &
Scheduling 4) Executive

Mode Identification + Monitors Control
& Recovery System

*

-’E!I1

?

Hardware

Figure 8 DS1 Architecture (Pen et al. 1996).

The DS 1 architecture, shown in figure 8, consists of five modules. They are the

Planning-and-Scheduling, Executive, Real-time-Control-System, Monitors, and model-

based-Mode-Identification-and-Recovery (MIR) modules. The Planning-and-scheduling

module provides high level plans to the Executive module. The Executive module uses task

trees to connect domain specific modules like the navigation and guidance-control modules

to carry out high level plans. The Executive module then uses Real-time-Control-System

18

module to execute task trees on the Hardware. The Monitors and MIR modules are used to

support reactive behaviors. The Monitors module detects faults and the MIR module

produces recovery procedures for them. The DS 1 architecture uses many ideas in Reid

Simmons and James Firby’s architectures to control autonomous spacecraft.

Pen et al. mention that the main drawback of their architecture is lack of a consistent

knowledge database. The Planning-and-Scheduling, Executive, and MIR modules all have

their own database where they store information about the world. Therefore, the architecture

can have three different views of the world (Pen et al. 1996).

19

.

3 ASPIRE Amhitectum

3.1 Spacecraft Requirements

Framework

Pen et al. mention six design requirements for autonomous spacecraft. First,

autonomous spacecraft need to meet hard deadlines. Missing the time frame for maneuvers

like orbit insertion may jeopardize spacecraft health or may expand unnecessary fuel.

Therefore, spacecraft need to define a global timing concept to meet hard deadlines.

Second, autonomous spacecraft have tight resource constraints. All science instruments may

have to be turned off during engine firing to conserve power usage. Hence, spacecraft need

to share resources and use them efficiently. Third, autonomous spacecraft have limited

observability. Each sensor adds weight, so only sensors that have clear value are placed on

the spacecraft. As the result, spacecraft should maximize utilization of all available sensor

information when making decisions. Fourth, autonomous spacecraft need to perform

concurrent activities. Multiple events may require spacecraft’s attention at the same time.

Therefore, spacecraft need to handle them concurrently. Fifth, autonomous spacecraft need

to support long operation periods. With many spacecraft exploring the solar system, the

Deep Space Network antennas can only communicate with each spacecraft for a small time

period. Hence, spacecraft need to degrade gracefully when faults occur between ground

communications. Sixth, autonomous spacecraft need to have high reliability. All spacecraft

components must be extremely reliable. As the result, spacecraft need to use additional

software and hardware to achieve high reliability. These six spacecraft requirements are

important for designing autonomous spacecraft architectures (1996).

3.2 Design Philosophy

Of the four architecture philosophies in chapter

architecture that emphasizes on performing deliberative

2, Reid Simmons’s task-orientated

behaviors with added mechanisms

for performing reactive behaviors is the

autonomous spacecraft. An architecture

behaviors can handle hard deadlines, tight

concurrent activities requirements. Added

can support long operation periods and

most appropriate philosophy for controlling

that emphasizes on performing deliberative

resource constraints, limited observability, and

mechanisms for performing reactive behaviors

high reliability requirements. Therefore, Reid

Simmons’s design philosophy can meet all six spacecraft requirements in section 3.1.

A deliberative architecture is more appropriate for controlling autonomous

spacecraft than a reactive architecture. Most of the time, spacecraft are placed in predictable

environments conducting predictable

handle unexpected events. Reactive

behaviors. Rarely

architectures like

20

do they need fast response time to

James Firby’s RAPs and Rodney

.

Brook’s Subsumption architecture achieve fast response time by assuming execution

without context has no bad consequences. But, muddling through sketchy plans in RAPs or

using highly reactive behaviors in Subsumption architecture can cause spacecraft to miss

hard deadlines or waste resources. Hartley and Pipitone also point out further problems with

the Subsumption architecture that makes it hard to control complexity (1991). Therefore a

deliberative architecture is more appropriate for controlling autonomous spacecraft than a

reactive architecture.

A task-oriented deliberative architecture like Reid Simmons’s TCA is more

appropriate for controlling autonomous spacecraft than a time-oriented deliberative

architecture like James Albus’s architecture (Simmons 1994). Organizing an architecture by

task’s functionalist y allows easier reasoning and implementation. Therefore, the most

appropriate architecture philosophy for autonomous spacecraft is a task-oriented

architecture that emphasizes on performing deliberative behaviors with added mechanisms

for performing reactive behaviors.

3.3 Architecture Framework

Real World

e

-

t Sensory
Processing

‘\,
Is -N
I \ ‘ .
I \ Knowledge

\ *.
I \ -~ Database
I \ -.
I \

\

I \ ‘ \ \

I \
\

-x
I \

-.
\

I \ =
r

I \

I \

I \ Planner\I \
I \
I \

* h

Actuators
Behavior

4 Generation

Figure 9 ASPIRE Architecture Framework.

The ASPIRE architecture framework, shown in figure 9, consists of a deliberative

path and three by-pass paths. The deliberative path is used for conducting deliberative

behaviors. The three by-pass paths are added for conducting reactive behaviors. The

deliberative path is similar to James Albus’s hierarchy node architecture. But with the three

by-pass paths, the architecture framework looks similar to Rodney Brook’s Subsumption

architecture.

21

3.3.1 Deliberative Path

The deliberative path consists of the six modules shown in figure 9. They are the

Sensors, Sensory-Processing, Knowledge-Database, Planner, Behavior-Generation, and

Actuators modules. First, the Sensors module provides data about the Real-World to the

Sensory-Processing module. The Sensory-Processing module then interprets data and stores

them in the Knowledge-Database module. All the modules can access the information in the

Knowledge-Database module. Next, the Planner module generates high level commands and

stores them in an execution queue. When appropriate times come, high level commands in

the execution queue are sent to the Behavior-Generation module. The Behavior-Generation

module then uses pre-planned task trees to generate task trees for carrying out high level

commands. Finally, the Behavior-Generation module executes task trees’ low level

commands on the Real-World using the Actuators module. The deliberative path reacts to

unexpected events by having the Planner module re-prioritizes the tasks in the execution

queue. In summary, the deliberative path can handle all the events that are sent to the

Planner module.

3.3.2 Three By-Pass Paths

The three by-pass paths,

behaviors. The first by-pass path

shown in figure 9, are added for performing reactive

connects the Sensors module directly with the Actuators

module. The second by-pass path connects the Sensors module with the Behavior-

Generation module. The third by-pass path connects the Sensors module with the Planner

module. With the three by-pass paths, the architecture framework can be viewed as a

Subsumption architecture. The first by-pass path can be viewed as the first level of the

Subsumption Architecture, The second by-path path can be viewed as the second level. The

third by-pass path can be viewed as the third level. And the deliberative path can be viewed

as the fourth level. Each higher level path provides more deliberation, but slower response

time between the Sensors module and the Actuators module. Higher level paths of the

architecture can subsume lower level paths when they have time to handle events.

The first by-pass path connects the data from the Sensors module directly to the

Actuators module. It allows the Actuators module to immediately react to unexpected

events. This path’s goal is to ensure survival by providing fast reaction without deliberation.

Thus, the first by-path skips all the software modules to provide immediate control of the

spacecraft.

The second by-pass path connects the data from the Sensors module to the

Behavior-Generation module. It allows the Behavior-Generation module to interrupt the

current task execution. Interrupts can only occur between the low-level commands sent to

the Actuators module. When an interrupt occurs, all planning for the current task execution

are discarded. A clean-up task tree is first executed to halt the current task execution. Then

22

an emergency task tree is executed to deal with the interrupt. Afterwards, a re-planning task

tree is executed to resume the interrupted task. The second by-paths skips the Planner

module to provide fast control of the spacecraft.

The third by-pass path connects the data from the Sensors module to the Planner

module. It allows the Planner module to abort the current command and issue a new

command. Aborting the current command takes more time than interrupting the current

task execution because of the need to perform a complete clean-up. The third by-path skips

the Sensory-Processing module to provide quick control of the spacecraft.

3.3.3 Illustrations

The deliberative path can support all types of deliberative behaviors for autonomous

spacecraft. The Sensory-Processing module can detect surface features, surface changes, and

ejected fragments. The Sensory-Processing module can also estimate spacecraft position,

spacecraft state, and internal comet model. Similarly, the Behavior-Generation module can

execute momentum dumping, drag-makeup, orbiting, and close flyby maneuvers. The

Behavior-Generation module can also track ejected fragments and surface targets. The

deliberative path can perform all the deliberative behaviors needed by the ASPIRE project.

The three by-pass paths can provide faster response time for the spacecraft, For

example, when a cometary fragment is approaching the spacecraft, the deliberative path can

plan a maneuver to move away. But if faster response time is needed, the third by-pass path

can abort the current command and execute an escape maneuver. If faster response time is

needed, the second by-pass path can interrupt the current task execution and perform an

escape maneuver. If a very fast response is needed, the first by-pass path can control the

thrusters to move the spacecraft away. Another example is when the thrusters are not

working correctly during a bum, The deliberative path can adapt high level commands to

avoid the faulty thrusters. If faster response time is needed, the third by-pass path can abort

the current bum, perform the thruster shut-off sequence, and analyze the problem

immediately. If faster response time is needed, the second by-pass path can interrupt the

bum, turn off the faulty thrusters, reconfigure the backup thrusters, recalculate the needed

maneuver, and resume the bum. If a very fast response is needed, the first by-pass path can

shut off the faulty thrusters immediately. The three by-pass paths can provide faster

response time for dealing with unexpected events.

3.4 Evaluation

This architecture framework for autonomous spacecraft has seven good design

features. First, the framework integrates deliberative behaviors with reactive behaviors. It

uses the deliberative path to perform a task when there is enough fime and uses the

pass paths when faster response time is needed. Second, the framework separates

three by-

planning

23

from real-time control. It uses the Planner module to issue high level commands and uses

the Behavior-Generation module to execute them. Third, the framework provides one

consistent view of the Real-World to all the software modules. It uses a common database for

storing all the information about the Real-World. Fourth, the framework provides fault-

protection. It uses the deliberative path and the three by-pass paths to increase robustness

between the Sensor module and the Actuator module. Fifth, the framework contains only

stateless task trees. It uses the Knowledge-Database module to store all the needed state

information required by task tree execution. Sixth, the framework demonstrates using

additional software to improve existing capabilities. It uses the three by-pass paths to

improve the response time of the deliberative path. Seventh, the framework uses task trees to

interface with the spacecraft hardware. It uses TCA task trees to represent and execute high

level commands from the Planner module. These seven design features are very useful for

designing autonomous spacecraft architecture.

3.5 Issues

There are two issues with the architecture framework. The first issue is whether there

should be other by-pass paths. For example, a by-pass path connecting the Sensory-

Processing module to the Behavior-Generation module will give the Sensor-Processing

module direct control of the Behavior-Generation module. The second issue is whether

there should be feedback paths. For example, a feedback path from the Behavior-

Generation module back to the Planner module will provide the Planner module direct

feedback from the Behavior-Generation module, Adding more by-pass and feedback paths
will make the architecture look more reactive.

3.6 Future Work

The architecture framework needs more work in five areas. First, the framework

needs to define how high level paths can subsume lower level paths. The higher level paths

need to take control when they can react to an event and relinquish control when they

cannot. Second the framework needs to define how to handle prioritization in each by-pass

path. Prioritization in each by-pass paths is needed for dealing with multiple aborts and

nested interrupts. Third, the framework needs to make the Knowledge-Database very

reliable. The Knowledge-Database module must be reliable because all the software modules

use it. Fourth, the framework needs a sensory processing module to detect faults. The

Cassini spacecraft uses a rule-based system for fault detection and the DS 1 spacecraft uses a

model-based system for fault detection (Pen et al. 1996). Fifth, the framework needs to a

behavior generation module to produce fault recovery plans. Different mechanisms are

needed for handling software and hardware faults. These five areas need to be solved before

the architecture framework can be made flight ready.

24

4 ASPIRE Implementation

4.1 Overview

Simulation

User
Interfhm - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1

v

I
Real Wdd

I 1

)----4Model
Acqu Ml tion

—
Science ‘\

‘x-Knowledge
Databa=

*

I

I
I
I

;
I
I
I
I
I
I
1
I
I
I

li

CE9 y“”’”” ‘-\, -.
b ‘.

\
\

-\

\
-.

\
\ ‘.

8
\

\
\
\ 1 J

\----- ----- ----- -----

I
I

----- --- A

I
I
I
I
I
I
I

Figure 10 ASPI~ Implementation.

framework discussed in

behaviors and using the

The ASPIRE implementation is based on the architecture

chapter 3 of using the deliberative path for performing deliberative

three by-pass paths for performing reactive behaviors. The deliberative path, shown in

figure 10, consists of ten modules. They are the Real-World, Image-Identification, Model-

Acquisition, Science, APAST, Navigation, Knowledge-Database, Planner, Simulation-Clock,

and User-Interface modules. TCA messages are used for communication between modules.

TCA task trees are used to represent and execute Planner’s high level commands. The three

25

by-pass paths are not implemented. The deliberative path can support all the deliberative

behaviors required by the ASPIRE project.

The deliberative path consists of two parts, sensing and acting. The goal of the

sensing part is to gather information about the Real-World module’s comet and spacecraft

models. The Real-World module outputs camera images to the Image-Identification module

for processing. The Image-Identification module determines locations on the comet for

these images using the Knowledge-Database module’s internal comet model. Afterwards,

the Image-Identification module outputs identified images to the Model-Acquisition,

Science, AFAST, and Navigation modules. The Model-Acquisition module uses these

images to update the Knowledge-Database module’s internal comet model. The Science

module uses these images to detect sub-pixel level movement. The AFAST module uses

these images to detect pixel level movement. Finally, the Navigation module uses these

images to estimate spacecraft position. All information from these four sensory processing

modules are stored in the Knowledge-Database module. The Knowledge-Database module

also receives information about the camera position from the Real-World module’s

spacecraft model. The information stored in the Knowledge-Database can be accessed by all

the modules. The sensing part of the deliberative path uses many sensing algorithms to

sense the environment.

The goal of the acting part is to control the spacecraft to capture scientific events.

The Planner module can query the Knowledge-Database module for a list of interesting

targets. The Planner module can command the Real-World module to track these targets

using the narrow-field camera. The Planner module can also command the Navigation

module to produce plans for performing close flyby maneuvers over them. Commands and

plans from the Planner and Navigation modules are executed on the Real-World module’s

spacecraft model. The acting part of the deliberative path uses many control algorithms to

control the spacecraft.

The Simulation-Clock and User-Interface modules are used to support the software

simulation. The Simulation-Clock simulates the clock on-board the spacecraft by

broadcasting the current time to all modules. The User-Interface module can perform three

functions. It can simulate ground commands to the Planner module, inject changes to the

Real-World module’s comet model, and change the broadcast interval in the Simulation-

Clock module. In the actual spacecraft, the Simulation-Clock module will be replaced by a

real clock and the User-Interface module will be replaced by a module accepting ground

commands.

4.2 Modules Description

The following is a brief description of each software module .

26

4.2.1 Real-World Module

The Real-World module contains a comet model and a spacecraft model. The comet

model contains comet’s rotation rate, rotation axis, shape, and surface features. The

spacecraft model contains cameras and thrusters. The Real-World module simulates the

actual comet and spacecraft movements. It can accept four types of commands. First, it can

accept commands from the User-Interface model to inject changes to the comet model.

Second, it can accept commands from the Planner module to control the narrow-field

camera. Third, it can accept commands from the Navigation module to control spacecraft

thrusters. Finally, it can accept commands from the Navigation module to take wide-field

camera images for landmark measurements. The architecture uses the Real-World module to

simulate the environment.

4.2.2 Image-Identification Module

The Image-Identification module determines the coordinates on the comet for each

camera image. Its function is to informs other modules where on the comet each image is

looking at. It queries the Knowledge-Database module’s internal comet model and

spacecraft position to help it identify images using comet landmarks. The Image-

Identification module sends identified images to the Model-Acquisition, Science, AFAST,

and Navigation modules for further processing.

4.2.3 Model-Acquisition Module

The Model-Acquisition module receives images from the Image-Identification

module and updates the Knowledge-Database module’s internal comet model. The Model-

Acquisition module performs four functions. First, it determines comet’s rotational rate and

rotational axis. Second, it constructs comet’s shape with a wire-frame model. Third, it

constructs a texture map of the comet. Fourth, it stores locations of comet landmarks. The

Model-Acquisition estimates the Real-World module’s comet model.

4.2.4 Science Module

The Science module receives images from the Image-Identification module and

compares them with past images of the same location to detect sub-pixel level movements.

When the Science module detects a sub-pixel level movement, it informs the Knowledge-

Database module about the center and size of the movement, The Science module can

detect sub-pixel level movements like cracks occurring on the comet.

27

4.2.5 AFAST Module

The AFAST module receives images from the Image-Identification module and

compares them with previous images to detect pixel-level movements. When the AFAST

module detects a pixel level movement, it informs the Knowledge-Database module about

the center and size of the movement. The AFAST module can detect pixel level movements

like ejected particles coming out from the comet.

4.2.6 Navigation Module

The Navigation module performs both sensory-processing and behavior-generation

functions. For sensory processing function, it receives images from the Image-Identification

module to estimate spacecraft position. Then it generates a spacecraft position profile for

the Knowledge-Database module, For behavior-generation function, the Navigation module

produces plans to perform different types of maneuvers around the comet. It also informs

the Knowledge-Database about the status of the current maneuver. The Navigation module

queries the Knowledge-Database module for information about the comet to help it

navigate. The Navigation module can generate plans for performing orbiting, close-flyby

and escape maneuvers.

4.2.7 Knowledge-Database Module

The Knowledge-Database module stores and updates information about the Real-
World module. The Model-Acquisition module updates comet’s rotational rate, rotational

axis, wire-frame model, texture map, and landmark locations. The Science and AFAST

modules report locations of interesting targets on the comet. The Navigation module

updates spacecraft position profile and maneuver status. The Real-World module updates

current camera position. When the Science and AFAST modules discover a target, the

Knowledge-Database module converts the target location on the image to the target location

in the internal comet model. Afterwards, it informs the Planner module that a new target has.
been discovered. The Knowledge-Database provides one consistent view of the Real-World

module for all the software modules.

4.2.8 Planner Module

The Planner module controls the spacecraft by generating high level commands. It

can generate commands to control the narrow-field camera or perform different maneuvers

around the comet. The Planner module can also generate commands in response to the

ground commands from the User-Interface module. All commands are placed in an

execution queue and sent to the Real-World and Navigation modules when appropriate

28

.
.

times come. The Planner module decides what actions the spacecraft should take in response

to the information in the Knowledge-Database module.

Start of
Simulation

Orbiting

=“9

Close Flyby

\

Q

Escape Speed
Not Reached

Qscape Speed
Reached

oEnd of
Simulation

Figure 11 State Transition Diagram.

The Planner module uses the state transition diagram, shown in figure 11, to control

the spacecraft movement. The spacecraft is initially in the Orbiting state. The Planner

module can find out the current state from the Knowledge-Database module and use

different commands to change it. If the spacecraft is in the Orbiting state, the Planner

module can issue a close flyby command to enter the Close-Flyby state. After a close flyby

maneuver is performed, the spacecraft returns to the Orbiting state. When one of the

sensory-processing module detects an emergency like a comet break-up or ejected particles

moving toward the spacecraft, the Planner module can issue an escape to safety command to

slowly move the spacecraft away from

reaches the escape speed. The Planner

level” commands to the spacecraft.

the comet. The simulation ends when the spacecraft

module can capture scientific events by issuing high

29

.

4.2.9 Simulation-Clock Module

The Simulation-Clock module simulates the clock on-board the spacecraft. It

broadcasts the current time to all modules. It can also receive queries from other modules

for the current time. The Simulation-Clock module performs discrete-time simulation by

waiting for all the modules to finish processing the current time interval before broadcasting

the next time. The User-Interface module can change the broadcast interval to speed up or

slow down the simulation. The Simulation-Clock module represents the real clock onboard

the spacecraft.

4.2.10 User-Interface Module

The User-Interface module’s primary function is to allow the user to inject events

and commands. The user can inject cracks on the comet, eject particles from the comet, or

break the comet apart. The user can also request the Planner module to perform a close

flyby, an orbiting, or an escape to safety maneuver. Finally, the User-Interface module can

change the Simulation-Clock module’s broadcast interval to speed up or slow down the

simulation. The User-Interface module is used to support the simulation.

4.3 Evaluation

The ASPIRE implementation has eleven good features. First, two coordinate systems

are used to specify positions. All spacecraft, camera, and target positions are described in

both the inertial frame and the comet-fixed frame coordinate systems. Some modules prefer

positions described in the inertial frame while other modules prefer positions described in

the comet-fixed frame. Having all position vectors described in both coordinate systems

provides an easy solution for module communication.

Second, camera images are classified by how they are taken instead of when they are

taken. Each image is tagged with a time stamp, a camera type, a spacecraft trajectory vector,

a camera bore-sight vector, a camera orientation vector, and a sun position vector instead of

a mapping number, an orbit number, and a picture number. These tags describes the exact

viewing location on the comet for each image.

Third, interesting targets are identified by vectors in the internal comet model. The

Science and AFAST modules detect movements on the images. Since images are classified

by how they are taken, the Knowledge-Database module can convert the targets on the

images to the target vectors in the internal comet model. Representing interesting targets by

vectors in the internal comet model provides a simple interface for the Planner module to

respond to new target discoveries.

Fourth, each interesting target contains an image patch of the target. The Real-World

module can use these image patches to better track targets using the narrow-field camera.

Image patches provide useful information about the discovered targets.

30

.

Fifth, the Planner modules uses a state transition diagram to control the spacecraft.

The Planner module uses high level commands to change the spacecraft state. State

transition diagram allows easy implementation and modification of the Planner module.

Sixth, the camera resource is shared between several modules. The Model-

Acquisition, Science, AFAST, and Navigation modules share one wide-field camera and one

narrow-field camera. Two cameras are sufficient to meet the needs of these four modules.

Seventh, one internal comet model is used by the all the software modules. An

internal comet model that contains comet’s rotational rate, rotational axis, wire-frame model,

texture map, and landmark locations can meet the all the software modules’ needs. Having

one internal comet model provides one consistent view of the Real-World module.

Eighth, all software module should be developed in one programming language and

on one platform. If all software modules are developed in one language, then modules do

not have to view each other as black boxes. If all software modules are developed on one

platform, then compiling becomes easier. Even though we can combine software modules

developed in different languages and on different platforms, it is better have to everything

in one language and on one platform.

Ninth, message passing is used for module communication. Message passing is

better than procedure call for module communication because it forces the programmer to

define a simple and clear interface. Message passing provides good abstraction for each

module.

Tenth, blocking messages are used for all the message communication. Blocking

messages are better than non-blocking messages for module communication because they

force the programmer to return from message handlers immediately. It is dangerous to mix

blocking and non-blocking messages in an architecture. Using all blocking messages for

module communication provides a good way to reason the architecture.

Eleventh, the number of messages and the data associated with each message should

be kept to the minimum. Too many messages or large message data complicate the

interface. Each message should provide a clear function. Fewer messages and smaller

message data provide better interface.

4.4 Issues

There are three issues with this architecture implementation. First, should the
Simulation-Clock module use discrete-time or real-time simulation. Discrete-time simulation

eliminates many important timing issues but does allow time scale to change. Second, how

should the architecture deal with computation power and communication bandwidth limits.

Modules performing urgent tasks need higher priority when using these scarce resources.

Third, how can we make distributed programming easier. Mechanisms are needed for

31

.
.,

dealing with timing issues associated with message passing. These three issues are important

for the implementation of the architecture.

4.5 Future Work

The architecture implementation can improve in two more areas, beside the five

areas already mentioned in section 3.6, First, the architecture implementation can simulate

task tree execution in the Planner module to increase the confidence of the plans. Second,

the architecture implementation can use a more sophisticated spacecraft model for

simulation. These two areas and the five areas mentioned in section 3.6 are needed to make

the implementation complete.

32

.
,,

5 Conclusion

Autonomous spacecraft can use deliberative behaviors to achieve missions objectives

and reactive behaviors to handle unexpected events. The ASPIRE architecture framework

uses the deliberative path to perform deliberative behaviors and uses the three by-pass paths

to perform reactive behaviors. The ASPIRE architecture framework looks like a

Subsumption architecture with the four paths connecting the Sensor module with the

Actuator module. The deliberative path can subsume the three by-pass paths when it has

time to handle events. The three by-pass paths are used to provide faster response time, but

less deliberation, between the Sensor module and the Actuator module. The ASPIRE project

demonstrates that the deliberative path can support technology integration for a comet

orbiter mission.

In conclusion, a good design philosophy for controlling autonomous spacecraft is a

task-oriented architecture that emphasizes on performing deliberative behaviors with added

mechanisms for performing reactive behaviors. A good way to design a control architecture

for autonomous spacecraft is to start with a deliberative path for performing deliberative

behaviors and then add by-pass paths to make the architecture more reactive. Finally, a

good way to implement the deliberative path is to use one Knowledge-Database module to

store all the information about the environment. The ASPIRE architecture framework is a

good framework for controlling autonomous spacecraft.

33

, .

.
,

Refenmces

1.

2.

3.

4.

5.

6.

-7.

8.

9.

10,

11.

12,

13,

14.

Albus, J. S. Outline for a theory of intelligence. IEEE Transactions on Systems, Man,

and Cybernetics. 21(3):473-509; 1991.

Aljabri, A.; Eldred, D.; Goddard, R.; Gor, V. Kia, T.; Rokey, M.; Scheeres, D.; Wolff, P.

Autonomous Serendipitous Science Acquisition for Planets (ASSAP). AIAA Paper 96-

0699; 1996.

Brooks, R. A. A robust layered control system for a mobile robot. MIT A. 1. Memo

864; 1985.

Chu, C.; Zhu, D. Q.; Udomkesmalee, S.; Pomerantz, M. I. Realization of autonomous

image-based spacecraft pointing systems: planetary flyby example. SPIE’S International

Symposium on Optical Engineering in Aerospace Sensing, Space Guidance, Control,

and Tracking Conference. Paper No. 2221 -04; 1994.

Crippen, R. E. Measurement of subresolution terrain displacements using SPOT

panchromatic imagery. Episodes. 15(1):56-61; 1992.

Ferrell, C. Robust agent control of an autonomous robot with many sensors and

actuators. MIT A. 1. Memo 1443; 1993.

Firby, R. J. Architecture, representation and integration: an example from robot

navigation. Proceedings of the 1994 AAAI Fall Symposium Series Workshop on the

Control of the Physical World by Intelligent Agents; 1994.

Firby, R. J. Adaptive execution in complex dynamic worlds. Ph.D. Thesis, Yale

University Technical Report, YALEU/CSD/RR #672; 1989.

Hartley, R.; Pipitone, F. Experiments with the Subsumption architecture. Proceedings of

the 1991 IEEE International Conference on Robotics and Automation. 1652-1658;

1991.

Pen, B,; Bernard D. E.; Chien, S. A,; Gat, E.; Muscettola, N.; Nayak, P. P.; Wagner, M.

D.; Williams, B. C. A remote agent prototype for spacecraft autonomy. Proceedings of

SPIE-96; 1996.

Scheeres, D. J. Close proximity and landing operations at small bodies. AIAA/AAS

Astrodynamics Specialist Conference. AIAA Paper 96-3580; 1996.

Shih, J. Software architecture for autonomous spacecraft. 1995.

Simmons, R. G. Structured control for autonomous robots. IEEE Transactions on

Robotics and Automation. 10(1): 34-43; 1994.

Simmons, R.; Goodwin, R.; Fedor, C.; Basista, J. Task control architecture programmer’s

guide to version 8.0. 1995.

34

